1.在数列{an}中,a1=1,a(n+1)=(1+1/n)an+(n+1)/2的n次方
问题描述:
1.在数列{an}中,a1=1,a(n+1)=(1+1/n)an+(n+1)/2的n次方
(1)设bn=an/n,求数列{bn}的通项公式
(2)求数列{an}的前n项和
1 n和n+1均为a的下标
答
a(n+1)=[(n+1)/n]an+(n+1)/2^n两边同除以n+1a(n+1)/(n+1)-(an)/n=1/2^n(an)/n-a(n-1)/(n-1)=1/2^(n-1).(a2)/2-a1=1/2叠加,中间项减去a(n+1)/(n+1)-a1=1/2^n+1/2^(n-1)+...+1/2=(1/2)(1-1/2^n)/(1-1/2)=1-1/2^na(n+1)...