求椭圆内接四边形最值

问题描述:

求椭圆内接四边形最值
P.Q.M.N四点都在椭圆x^2+y^2/4上,F为椭圆在y轴正半轴焦点,已知PQ垂直于MN,求四边形PQMN面积最大值和最小值

显然,四边形PQMN应是椭圆的内接矩形.设P(x,y)在第一象限(x≥0,y≥0),则矩形PQMN的面积S=4xy.由椭圆方程知x^2+y^2/4=1,即4x^2+y^2=4,可以写成(2x)^2+y^2=4.于是,S=4xy=2*(2x)*(y) ≤(2x)^2+y^2=4.即S有最大值...