已知椭圆C的左右焦点为F1F2,离心率为e,直线l:y=ex+a与x轴y轴分别交与点A,B
问题描述:
已知椭圆C的左右焦点为F1F2,离心率为e,直线l:y=ex+a与x轴y轴分别交与点A,B
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点为F1F2,离心率为e,直线l:y=ex+a与x轴y轴分别交与点A,B,M是直线与椭圆C的以个公共点,P是点F1关于直线的对称点,设AM向量=rAB向量,(1)证明:r=1-e^2;(2)若r=3/4,三角形MF1F2的周长为6;写出椭圆C的方程
答
(1),由题易求A、B的坐标为:A(-a/e,0),B(0,a).设M的坐标为(x,y),则:x^2/a^2+y^2/b^2=1,且 y=ex+a.向量AM、向量AB的坐标为:向量AM=(x+a/e,y),向量AB=(a/e,a),因为向量AM=r向量AB,所以 (x+a/e,y)=r(a/e,a)...