直线y=22x与椭圆x2a2+y2b2=1,a>b>0的两个交点在x轴上的射影恰为椭圆的两个焦点,则椭圆的离心率e等于(  ) A.32 B.22 C.33 D.12

问题描述:

直线y=

2
2
x与椭圆
x2
a2
+
y2
b2
=1
,a>b>0的两个交点在x轴上的射影恰为椭圆的两个焦点,则椭圆的离心率e等于(  )
A.
3
2

B.
2
2

C.
3
3

D.
1
2

由题意及椭圆的对称性可设两个交点分别为M(c,

2
2
c),N(−c,−
2
2
c)

把M代入椭圆方程得
c2
a2
+
1
2
c2
b2
=1
,又b2=a2-c2
化为2c4-5a2c2+2a4=0,
∴2e4-5e2+2=0,
∴(2e2-1)(e2-2)=0,
∵0<e<1,∴2e2-1=0,解得e=
2
2

故选B.