如图,两建筑物的水平距离为30米,从A点测得D点的俯角α为45°,测得C点的俯角β为60°,求这两个建筑物AB、CD的高(结果保留根号).
问题描述:
如图,两建筑物的水平距离为30米,从A点测得D点的俯角α为45°,测得C点的俯角β为60°,求这两个建筑物AB、CD的高(结果保留根号).
答
知识点:本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,然后利用解直角三角形的知识求出各线段的长度.
过D作DE⊥AB,垂足为E,
在Rt△ADE中,∠ADE=45°,
∴AE=DE=BC=30米,
在Rt△ABC中,∠ACB=60°,
则AB=BCtan60°=30
米,
3
故CD=(30
-30)米.
3
答:两个建筑物AB、CD的高分别为30
米、(30
3
-30)米.
3
答案解析:过D作DE⊥AB,垂足为E,则∠ADE=α=45°,继而可求出AE,在Rt△ABC中求出AB,继而可得出AB、CD的高.
考试点:解直角三角形的应用-仰角俯角问题.
知识点:本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,然后利用解直角三角形的知识求出各线段的长度.