关于一道概率题的证明A,B,C三个事件满足:P(AB)=p(A)p(B),A∩B属于C,Aˉ∩Bˉ属于Cˉ.证明:P(AC)>=P(A)P(C)Aˉ指的是A的补集。

问题描述:

关于一道概率题的证明
A,B,C三个事件满足:
P(AB)=p(A)p(B),A∩B属于C,Aˉ∩Bˉ属于Cˉ.
证明:P(AC)>=P(A)P(C)
Aˉ指的是A的补集。

我认为好
A∩B属于C,Aˉ∩Bˉ属于Cˉ,可以推出A∩B=C
分情况,如果B包含A,A=C,P(AC)>P(A)P(C)
如果A包含B,P(AC)>P(A)P(C)
如果A不包含B,B不包含A,P(AC)=P(A)P(C)
大概,你再算算