数列前N项和问题
问题描述:
数列前N项和问题
A(n+1)=2An-3^(n+1)
求前N项和.
答
A(n+1)=2An-3^(n+1)可化为:A(n+1)+3*3^(n+1)=2*(A(n)+3*3^n)所以数列A(n)+3*3^n是以A1+9为首项,q=2为公比的等比数列所以A(n)+3*3^n=(A1+9)*2^(n-1),即A(n)=(A1+9)*2^(n-1)-9*3^(n-1)所以前N项和Sn=)=(A1+9)...