已知数列{an}其前n项和为Sn,且满足4Sn=(an+1)^2

问题描述:

已知数列{an}其前n项和为Sn,且满足4Sn=(an+1)^2
试用an-1表示an(n≥2,n属于N*)

n≥2时,
4Sn=(an+1)²
4S(n-1)=(a(n-1)+1)²
上面两式相减得
4an=(an+1)²-(a(n-1)+1)²
4an =(an)²+2an+1-(a(n-1))²-2a(n-1)-1
(an)²-2an+1= (a(n-1))²+2a(n-1)+1
(an-1)²=(a(n-1)+1)²
①an-1=a(n-1)+1
an=a(n-1)+2
②an-1=-a(n-1)-1
an=-a(n-1)
答案:an=a(n-1)+2或an=-a(n-1)