试确定实数a的取值范围,使不等式组x2+x+13>0x+5a+43>43(x+1)+a恰有两个整数解.

问题描述:

试确定实数a的取值范围,使不等式组

x
2
+
x+1
3
>0
x+
5a+4
3
4
3
(x+1)+a
恰有两个整数解.

x
2
+
x+1
3
>0,两边同乘以6得3x+2(x+1)>0,解得x>-
2
5

由x+
5a+4
3
4
3
(x+1)+a,两边同乘以3得3x+5a+4>4(x+1)+3a,解得x<2a,
∴原不等式组的解集为-
2
5
<x<2a.
又∵原不等式组恰有2个整数解,即x=0,1;
则2a的值在1(不含1)到2(含2)之间,
∴1<2a≤2,
∴0.5<a≤1.
答案解析:先求出不等式组的解集,再根据x的两个整数解求出a的取值范围即可.
考试点:一元一次不等式组的整数解.

知识点:此题考查的是一元一次不等式的解法,得出x的整数解,再根据x的取值范围求出a的值即可.
求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.