设f(x)=(1-x)/(1+x),求证设f(x)=(1-x)/(1+x),求证:(1)f(-x)=1/f(x) (x≠正负1)(2)f(1/x)=-f(x)(x≠-1,x≠0)
问题描述:
设f(x)=(1-x)/(1+x),求证
设f(x)=(1-x)/(1+x),求证:
(1)f(-x)=1/f(x)
(x≠正负1)
(2)f(1/x)=-f(x)
(x≠-1,x≠0)
答
1]
f(x)=(1-x)/(1+x)
f(-x)=[1-(-x)]/[1+(-x)]
=(1+x)/(1-x)
=1/f(x)
2]
f(1/x)=[1-(1/x)]/[1+(1/x)]
=[(x-1)/x]/[(x+1)/x]
=(x-1)/(x+1)
=-f(x)
答
1.证明:
x≠-1
f(-x)=(1+x)/(1-x)=1/f(x)
2.证明
x≠-1,x≠0
f(1/x)=(1-1/x)/(1+1/x)=(x-1)/(x+1)=-f(x)
答
f(x)=(1-x)/(1+x)
1、
f(-x)=[1-(-x)]/[1+(-x)]=(1+x)/(1-x)=1/[(1-x)/(1+x)]=1/f(x)
2、
f(1/x)=(1-1/x)/(1+1/x),上下同乘以x
=(x-1)/(x+1)
=-(1-x)/(1+x)
=-f(x)