如图,已知BO平分∠CBA,CO平分∠ACB,且MN∥BC,设AB=12,BC=24,AC=18,则△AMN的周长是______.
问题描述:
如图,已知BO平分∠CBA,CO平分∠ACB,且MN∥BC,设AB=12,BC=24,AC=18,则△AMN的周长是______.
答
∵BO平分∠CBA,CO平分∠ACB,
∴∠NBO=∠OBC,∠OCM=∠OCB,
∵MN∥BC,
∴∠NOB=∠OBC,∠MOC=∠OCB,
∴∠NBO=∠NOB,∠MOC=∠MCO,
∴MO=MC,NO=NB,
∵AB=12,AC=18,
∴△AMN的周长=AM+MN+AN=AB+AC=12+18=30.
故答案为30.
答案解析:根据BO平分∠CBA,CO平分∠ACB,且MN∥BC,可得出MO=MC,NO=NB,所以三角形AMN的周长是AB+AC.
考试点:等腰三角形的判定与性质;平行线的性质.
知识点:本题考查了等腰三角形的判定和性质以及平行线的性质,是基础知识要熟练掌握.