求函数f(x)=(2/x)+[9/(1-2x)],x属于(0,1/2)的最小值,并指出取最小值时x的值.
问题描述:
求函数f(x)=(2/x)+[9/(1-2x)],x属于(0,1/2)的最小值,并指出取最小值时x的值.
答
过程是这样的:可以先将原式乘以[(1-2x)+2x],即f(x)=[2/x+9/(1-2x)]*[(1-2x)+2x]=[2(1-2x)/x)]+4+9+18x/(1-2x)大于等于13+2倍根号下{[2(1-2x)/x]*[18x/(1-2x)]}=13+2倍根号下36=13+12=25,即此式的最小值为25,然后令2...