过抛物线y^2=4px(p>0)的顶点作互相垂直的两弦OA.OB,求AB中点P的轨迹方程
问题描述:
过抛物线y^2=4px(p>0)的顶点作互相垂直的两弦OA.OB,求AB中点P的轨迹方程
答
设A(x1,y1),B(x2,y2) x1,x2,y1,y2均不等于0
∴y²1=4px1,y²2=4px2
x1=y²1/(4p),x2=y²2/(4p)
∵OA⊥OB
∴OA●OB=0
∴x1x2+y1y2=0
∴(y1y2)²/(16p²)+y1y2=0
∵y1y2≠0
∴y1y2=-16p²
x1x2=16p²
设AB与x轴交于M(m,0)
则AB:x=ty+m代入y²=4px
得y²=4p(ty+m)
即y²-4pty-4pm=0
∴y1y2=-4pm=-16p²
∴m=4p
即M(4p,0)
设AB中点为(x,y)
则 y=(y1+y2)/2=2pt ==>t=y/(2p)
x=ty+4p=2pt²+4p
∴x=2p*y²/(4p²)+4p
x=y²/(2p)+4p
∴AB中点P的轨迹方程为
y²=2p(x-4p)
答
设A(pm^2,2pm),B(pn^2,2pn), ( m与n都不为0,且不相等) AB中点P(x,y)两弦OA.OB互相垂直得 (pmn)^2+4P^2mn=0mn=-4 (1)pm^2+pn^2=2x (2)pm+pn=y &nbs...