椭圆上有两点P、Q,O为坐标原点,且有直线OP,OQ的斜率满足kop×koq=-1/2 求线段PQ中点的轨迹方程.提示:用点合法做.

问题描述:

椭圆上有两点P、Q,O为坐标原点,且有直线OP,OQ的斜率满足kop×koq=-1/2 求线段PQ中点的轨迹方程.
提示:用点合法做.

设p(x1,y1)Q(x2,y2),M(x,y)满足:
1 x1^2+2y1^2=2
2 x2^2+2y2^2=2
3 2x=x1+x2
4 2y=y1+y2
5 y1/x1*y2/x2=-1/2->2x1x2+y1y2=0
1+2式2(x1^2+x2^2)+y1^2+y2^2=4变
6 2(x1+x2)^2-4x1x2+(y1+y2)^2-2y1y2=4变(由3,4,5)
2*4x^2+4y^2=4+2*(2x1x2+y1y2)-》8x^2+4y^2=4+0
所以M的轨迹为:x^2+y^2/2=1/2 也是个椭圆

设参数方程 P(Acosa,Bsina)Q(Acosb,Bsinb) Kop=Btana/A Koq=Btanb/A B^2tanatanb/A^2=-1/2 PQ终点坐标(Acosa/2+Acosb/2,Bsina/2+Bsinb/2)x^2=A^2/4(cosa+cosb)^2 y^2=B^2/4(sina+sinb)^2