设O为坐标原点,曲线x2+y2+2x-6y+1=0上有两点P、Q,满足关于直线x+my+4=0对称,又满足OP•OQ=0. (1)求m的值; (2)求直线PQ的方程.

问题描述:

设O为坐标原点,曲线x2+y2+2x-6y+1=0上有两点P、Q,满足关于直线x+my+4=0对称,又满足

OP
OQ
=0.
(1)求m的值;
(2)求直线PQ的方程.

(1)曲线方程为(x+1)2+(y-3)2=9表示圆心为(-1,3),半径为3的圆.∵点P、Q在圆上且关于直线x+my+4=0对称,∴圆心(-1,3)在直线上.代入得m=-1.(2)∵直线PQ与直线y=x+4垂直,∴设P(x1,y1)、Q(x2,y2...