已知AB是抛物线y2=2px的任意一条焦点弦,且A(x1,y1)B(x2,y2)求证:X1X2=P²/4 y1y2=﹣P
问题描述:
已知AB是抛物线y2=2px的任意一条焦点弦,且A(x1,y1)B(x2,y2)求证:X1X2=P²/4 y1y2=﹣P
答
焦点F(p/2,0) 设斜率为k
y=k(x-p/2) y^2=k^2(x^2-px+p^2/4)
y^2=2px
x^2-(p+2p/k^2)x+p^2/4=0
x1x2=p^2/4
y=k(x-p/2) x=y/k+p/2
y^2=2px
y^2=2py/k+p^2
y^2-2py/k-p^2=0
y1y2=-p^2
答
焦点坐标为(p/2,0)∵有两个焦点∴弦不平行于x轴则设焦点弦所在直线为x=ky+m则p/2=0+m,即m=p/2交x=ky+m代入抛物线方程得:y²=2p(ky+m)即y²-2pky-2pm=0则y1y2=-2pm=-2p×p/2=-p²y1+y2=2pkx1x2=(ky1+m)(...