已知数列{an}是等差数列,其中a1=1,s10=100,设有an+1=log2bn,求数列{bn+1)的前n项

问题描述:

已知数列{an}是等差数列,其中a1=1,s10=100,设有an+1=log2bn,求数列{bn+1)的前n项
已知等差数列{an}中,a1=1,前10项和S10=100;
(1)求数列{an}的通项公式; 
(2)设有an+1=log2bn,求数列{bn+1}的前n项和Tn

(1) 由等差数列的前n项和的公式,Sn = n*a1 + (1/2)*n*(n-1)*d,根据题意可得
1*10 + (1/2)*10*(10-1)*d = 100,解得公差 d=2
所以an=a1+(n-1)*d = 1+(n-1)*2 = 2n-1
(2) 由an+1=log2(bn),可推出 bn = 2^(an+1) =2^(2n-1)
又bn/b(n-1) = 2^(2n-1)/2^[2(n-1)-1] = 4,b1=2^(2*1-1)=2
所以bn是首项为2,公比为4的等比数列
所以数列{bn+1}的前n项和
Tn = (b1+1) + (b2+1) + (b3+1)+……+(bn+1)
= (b1 + b2 + b3 + …… + bn) + (1 + 1 + 1 +……+1) (共n个1)
= [b1*(1-q^n)]/(1-q) + n
= [2*(1-4^n)/(1-4) + n
= [2^(2n+1)-2]/3 +n