已知数列{an},{bn}都是等差数列,且a1=5,b1=15,a100+b100=100,数列{cn}满足cn=an+bn(n∈N*),则数列{cn}的前100项和是_.

问题描述:

已知数列{an},{bn}都是等差数列,且a1=5,b1=15,a100+b100=100,数列{cn}满足cn=an+bn(n∈N*),则数列{cn}的前100项和是______.

因为数列{an},{bn}都是等差数列,且a1=5,b1=15,a100+b100=100,数列{cn}满足cn=an+bn(n∈N*),
则数列{cn}的前100项和为:

100(a1+a100+b1+b100)   
2
=
100×120
2
=6000.
故答案为:6000.