f(x)=1/1+x+2/1+x^2+4/1+x^4+8/1+x^8+16/1+x^16,求f(2)

问题描述:

f(x)=1/1+x+2/1+x^2+4/1+x^4+8/1+x^8+16/1+x^16,求f(2)

你把1/1+x写成(1-x)/(1-x^2)=1/(1-x^2)-x/(1-x^2)=2/3+1/(1-x^2)
f(x)=2/3+1/(1-x^2)+2/1+x^2+4/1+x^4+8/1+x^8+16/1+x^16(利用平方差)
  =2/3+1/(1+x^2)+2/1-x^4+4/1+x^4+8/1+x^8+16/1+x^16 
  =2/3+1/(1+x^2)+2/1+x^4+4/1-x^8+8/1+x^8+16/1+x^16 
  =2/3+1/(1+x^2)+2/1+x^4+4/1+x^8+8/1-x^16+16/1+x^16 
  =2/3+1/(1+x^2)+2/1+x^4+4/1+x^8+8/1+x^16+16/1-x^32
  =2/3+[f(x)-1/3]/2+16/1-x^32
整理:f(x)/2=1/2+16/1-x^32
  f(x)=1+32/(1-x^32)=x^32-33/(x^32-1)
当X=2时:
f(2)=1294967263/4294967295