若θ∈[-π12,π12],则函数y=cos(θ+π4)+sin2θ的最小值是(  ) A.0 B.1 C.98 D.32−12

问题描述:

若θ∈[-

π
12
π
12
],则函数y=cos(θ+
π
4
)+sin2θ的最小值是(  )
A. 0
B. 1
C.
9
8

D.
3
2
1
2

y=cos(θ+π4)+sin2θ=cos(θ+π4)-cos(2θ+π2)=-cos2(θ+π4)+cos(θ+π4)=-2cos2(θ+π4)+cos(θ+π4)+1∵θ∈[-π12,π12],∴12≤cos(θ+π4)≤32,所以设cos(θ+π4)=ty=-2(t-14)2+98当t...