已知Sm,Sn分别表示等差数列{an}的前m项与前n项的和,且SmSn=m2n2,那么aman=_.
问题描述:
已知Sm,Sn分别表示等差数列{an}的前m项与前n项的和,且
=Sm Sn
,那么m2 n2
=______. am an
答
在等差数列中,∵
=Sm Sn
,m2 n2
∴
=am an
=2am
2an
=
a1+a2m−1
a1+a2n−1
=
a1+a2m−1
2
a1+a2n−1
2
×
×(2m−1)
a1+a2m−1
2
×(2n−1)
a1+a2n−1
2
2n−1 2m−1
=
×S2m−1 S2n−1
=2n−1 2m−1
×(2m−1)2 (2n−1)2
=2n−1 2m−1
,2m−1 2n−1
故答案为:
2m−1 2n−1