已知数列{an}为公差不为零的等差数列,a1=1,各项均为正数的等比数列{bn}的第1项、第3项、第5项分别是a1、a3、a21. (1)求数列{an}与{bn}的通项公式; (2)求数列{anbn}的前n项和Sn.
问题描述:
已知数列{an}为公差不为零的等差数列,a1=1,各项均为正数的等比数列{bn}的第1项、第3项、第5项分别是a1、a3、a21.
(1)求数列{an}与{bn}的通项公式;
(2)求数列{anbn}的前n项和Sn.
答
(1)设数列{an}的公差为d,数列{bn}的公比为q
由题意,得a32=a1•a21,
即(a1+2d)2=a1(a1+20d),解之得d=4(舍去0)
∴an=1+(n-1)×4=4n-3
而{bn}的首项b1=a1=1,公比满足q2=
=a3 a1
=9,得q=39 1
∴bn=b1×3n-1=3n-1
综上所述,数列{an}与{bn}的通项公式分别为an=4n-3、bn=3n-1;
(2)由(1)得anbn=(4n-3)×3n-1
∴Sn=1×1+5×31+9×32+…+(4n-7)×3n-2+(4n-3)×3n-1…①
两边都乘以9,得
3Sn=1×31+5×32+9×33+…+(4n-7)×3n-1+(4n-3)×3n…②
①-②,得-2Sn=1+4(31+32+…+3n-1)-(4n-3)×3n
=4×
+1-(4n-3)×3n=(5-4n)×3n-53(1−3n−1) 1−3
∴数列{anbn}的前n项和Sn=
[(4n-5)×3n+5]1 2