设数列{an } 满足a1+3a2+3^2 *a3+...+3^(n-1)*an=n/3,n属于N*,1.求数列{an }的通项,
问题描述:
设数列{an } 满足a1+3a2+3^2 *a3+...+3^(n-1)*an=n/3,n属于N*,1.求数列{an }的通项,
请问第一问中为什么
1.a1+3a2+3^2 *a3+...+3^(n-1)*an=n/3
可得a1+3a2+3^2 *a3+...+3^(n-2)*a(n-1)=(n-1)/3
答
只写到n-1项,原来的n就为n-1了