设p为等轴双曲线x^2-y^2=1上的一点,F1,F2是两个焦点,证明lpfl*lpf2l=lopl^2

问题描述:

设p为等轴双曲线x^2-y^2=1上的一点,F1,F2是两个焦点,证明lpfl*lpf2l=lopl^2

设P(x,y)为双曲线x²-y²=1上任意一点,则有y²=x²-1,
因为F1(-√2,0),F2(√2,0),
所以|PF1|²=(x+√2)²+y²=x²+2√2x+2+x²-1=2x²+2√2x+1,
|PF2|²=(x-√2)²+y²=x²-2√2x+2+x²-1=2x²-2√2x+1,
(|PF1||PF2|)²=(2x²+2√2x+1)(2x²-2√2x+1)=(2x²+1)²-(2√2x)²=(2x²-1)²,
即|PF1||PF2|=2x²-1 (x²≥1),
又|OP|²=x²+y²=2x²-1,所以|PF1||PF2|=|OP|².