一道概率的数学题目(50分)

问题描述:

一道概率的数学题目(50分)
从1到2000(不包括1和2000)中随机取整数,取到的整数不能被6或8整除的概率?顺便帮我分析下,不用求答案,式子要~

先求出其中有多少整数不能被6或8整除,反其道行之,即求出有多少能被6或8整除.其中被6整除的有2000/6=333...2,即333-1=332个,被8整除的有250个,如果直接用332+250=582则重复了被24整除的部分(24是6与8的最小公倍数),那么减去能被24 整除的即2000/24=83...8即83个,所以被6或8整除的数共332+250-83=499个,所以取到的整数不能被6或8整除的概率是(1998-499)/1998
方法就是这样,可能算错数