已知函数f(x)=1+loga(x-1)(a>0且a≠1)的图象恒过定点P,又点P的坐标满足方程mx+ny=1,则mn的最大值为_.

问题描述:

已知函数f(x)=1+loga(x-1)(a>0且a≠1)的图象恒过定点P,又点P的坐标满足方程mx+ny=1,则mn的最大值为______.

∵x=2时,y=1,
∴函数y=log2(x-1)+1(a>0,a≠1)的图象恒过定点(2,1)即P(2,1),
∵点P在直线mx+ny=1上,
∴2m+n=1,
∵mn有最大值
∴mn>0,
由基本不等式可得,1=2m+n≥2

2mn

∴mn
1
8
当且仅当2m=n=
1
2
即m=
1
4
,n=
1
2
时取等号
故答案为:
1
8