设f(x)=(2x-1)^3,且f(x)展开得f(x)=a0+a1x+a2x^2+a3x^3 的形式,试求a1+a2+a3

问题描述:

设f(x)=(2x-1)^3,且f(x)展开得f(x)=a0+a1x+a2x^2+a3x^3 的形式,试求a1+a2+a3

a0=-1,a1=6,a2=-12,a3=8
a1+a2+a3=2