已知函数f(x)=a-2/2x+1(a∈R)为奇函数. (1)求函数f(x)的单调性; (2)若函数f(x)满足f(k-2)+f(2x+1+4x)>0对于任意x∈R恒成立,求实数K的取值范围; (3)证明xf(x)≥0.

问题描述:

已知函数f(x)=a-

2
2x+1
(a∈R)为奇函数.
(1)求函数f(x)的单调性;
(2)若函数f(x)满足f(k-2)+f(2x+1+4x)>0对于任意x∈R恒成立,求实数K的取值范围;
(3)证明xf(x)≥0.

∵函数f(x)=a-

2
2x+1
(a∈R)为奇函数,
∴f(0)=0,∴a=1.
∴f(x)=1-
2
2x+1

(1)∵f'(x)=
2xln2
(2x+1)2
>0

∴函数在R上为增函数;
(2)∵f(k-2)+f(2x+1+4x)>0,
∴f(2x+1+4x)>-f(k-2)=f(2-k),
∴2x+1+4x>2-k,∴k>2-(2x+1+4x),
∵f(k-2)+f(2x+1+4x)>0对于任意x∈R恒成立,
∴只需k>[2-(2x+1+4x)]max
设函数g(x)=2-(2x+1+4x)=-(2x2-2×2x+2,
令2x=t,(t>0),
∴g(t)=-t2-2t+2=-(t+1)2+3,
∴g(t)<3,∴k>3,
∴实数k的取值范围(3,+∞);
(3)设函数h(x)=xf(x)
∵函数f(x)为奇函数,
∴h(-x)=-xf(-x)=xf(x)=h(x),
∴函数h(x)=xf(x)为偶函数,
当x=0时,h(0)=0.
当x>0时,
∵2x+1>2,
∴0<
2
2x+1
<1,
∴1-
2
2x+1
>0,
∴xf(x)>0,
∴当x≥0时,xf(x)≥0,
由函数图象的对称性,知函数xf(x)≥0.