要使(ax^2-3x)(x^2-2x+1)的展开式中不含x^3项,则a=
问题描述:
要使(ax^2-3x)(x^2-2x+1)的展开式中不含x^3项,则a=
答
原式=ax^4-2ax^3+ax^2-3x^3+6x^2-3x
=ax^4-2ax^3-3x^3-ax^2+6x^2-3x
=ax^4-(2a-3)x^3-ax^2+6x^2-3x
∵(ax^2-3x)(x^2-2x+1)的展开式中不含x^3项
∴2a-3=0
∴2a=-3
∴a=-2/3