设abc=1 1/(ab+a+1)+1/(bc+b+1)+1/(ca+cd+1)的值?

问题描述:

设abc=1 1/(ab+a+1)+1/(bc+b+1)+1/(ca+cd+1)的值?
帮个忙,麻烦给出过程,
确实错了,最后一个是1/(ca+c+1)

1/(AB+A+1)+1/(BC+B+1)+1/(AC+C+1)
=1/(1/C+A+1)+1/(BC+1/AC+1)+1/(AC+C+1)
=C/(1+AC+C)+AC/(C+1+AC)+1/(AC+C+1)
=(C+AC+1)/(1+AC+C)
=1