如图,∠MON=30°,A在OM上,OA=2,D在ON上,OD=4,C是OM上任意一点,B是ON上任意一点,则折线ABCD的最短长度为______.
问题描述:
如图,∠MON=30°,A在OM上,OA=2,D在ON上,OD=4,C是OM上任意一点,B是ON上任意一点,则折线ABCD的最短长度为______.
答
作D关于OM的对称点D′,作A作关于ON的对称点A′,连接A′D′与OM,ON的交点就是C,B二点.此时AB+BC+CD=A′B+BC+CD′=A′D′为最短距离.连接DD′,AA′,OA′,OD′.∵OA=OA′,∠AOA′=60°,∴∠OAA′=∠OA′A=6...
答案解析:首先根据两点之间,线段最短确定C,B二点的位置,则折线ABCD的最短长度转化为一条线段的长度.然后运用勾股定理求出其值.
考试点:轴对称-最短路线问题;勾股定理.
知识点:此题考查了线路最短的问题,确定动点为何位置是关键.综合运用了等边三角形的知识.