已知x1>0,x2>0,且x1+x2x1x2就是x1+x2
问题描述:
已知x1>0,x2>0,且x1+x2x1x2
就是x1+x2
答
x1+x2
x1即0又x2>0,所以1-x2所以0同理,0所以(1-x1)(1-x2)即(1-x1)(1-x2)=x1x2-x1-x2+1所以x1+x2>x1x2
答
(x1+x2)(1/x1+1/x2)=2+x2/x1+x1/x2≥2+2=4>0
1/(x1+x2)>1/e>0
两式相乘1/x1+1/x2>4/e>1
化简得x1+x2>x1x2