若函数f(x)=(a2+4a-5)x2-4(a-1)x+3的图象恒在x轴上方,则a的取值范围是( )A. [1,+∞)B. (1,19)C. [1,19)D. (-1,19]
问题描述:
若函数f(x)=(a2+4a-5)x2-4(a-1)x+3的图象恒在x轴上方,则a的取值范围是( )
A. [1,+∞)
B. (1,19)
C. [1,19)
D. (-1,19]
答
f(x)=(a2+4a-5)x2-4(a-1)x+3的图象恒在x轴上方,即(a2+4a-5)x2-4(a-1)x+3>0(*)恒成立,
(1)当a2+4a-5=0时,可得a=-5或a=1,
若a=-5,(*)式可化为24x+3>0,不恒成立;
若a=1,(*)式可化为3>0,恒成立;
(2)当a2+4a-5≠0时,可得a≠-5且a≠1,
由题意可得,
,即
a2+4a−5>0 △=[−4(a−1)]2−4(a2+4a−5)×3<0
,解得1<a<19;
a2+4a−5>0
a2−20a+19<0
综上所述,a的取值范围是:[1,19),
故选C.
答案解析:由题意可得(a2+4a-5)x2-4(a-1)x+3>0恒成立,按照a2+4a-5=0①,a2+4a-5≠0②两种情况进行讨论,情况①可求得a值,然后代入不等式检验即可;情况②可等价转化为不等式组解决.
考试点:二次函数的性质.
知识点:本题考查二次函数的性质及恒成立问题,考查转化思想、分类讨论思想,属基础题.