若函数f(x)=(m²+4m-5)x²-4(m-1)x+3的图像都在x轴上方,求实数m的取值范围.

问题描述:

若函数f(x)=(m²+4m-5)x²-4(m-1)x+3的图像都在x轴上方,求实数m的取值范围.

(1)当m²+4m-5=0时,得m=1或m= - 5,m=1时,不等式化为:3>0对一切实数x恒成立m=1为所求。
(2)当 m= - 5,不等式化为 24x+3>0,对一切实数x不恒成立。
当m²+4m-5≠0时,即m≠1或m≠ - 5,时对一切实数x恒成立,即y=(m²+4m-5)x²-4(m-1)x+3函数图像在x轴上方,且m²+4m-5>0。
由m²+4m-5>0得 m>1或 m由函数图像在x轴上方,得b²-4ac求交集得 1(1)(2)求并集得 1≤m

首先要讨论其是不是一个二次函数:若不是的,故有:m²+4m-5=0,要满足图像都在x轴上方,所以必定为常数,所以要有(m-1)=0,所以m=1再次,当m²+4m-5不等于0,要满足图像都在x轴上方,二次函数的开口一定要向上,要不...