1.已知抛物线y^2=2px(p>0)的焦点弦AB的两端点坐标分别为A(x1,y1),B(x2,y2),则y1y2/x1x2的值一定等于( )

问题描述:

1.已知抛物线y^2=2px(p>0)的焦点弦AB的两端点坐标分别为A(x1,y1),B(x2,y2),则y1y2/x1x2的值一定等于( )
A.4 B.-4 C.p^2 D-p^2
2.已知圆M的圆心在抛物线C:y=x^2/4上,且圆M与y轴及C的准线相切,则圆M的方程是( )
A.x^2+y^2±4x-2y-1=0.
B.x^2+y^2±4x-2y+1=0.
C.x^2+y^2±4x-2y-4=0.
D.x^2+y^2±4x-2y+4=0.
3.当0

1.(p/2,0)y1^2=2px1y2^2=2px2y1^2y2^2=4p^2x1x2y1y2=-2p(x1x2)^1/2y1y2/x1x2=-2p/(x1x2)^1/2y=k(x-p/2)y^2=2pxk^2(x-p/2)^2=2pxk^2x^2-pk^2x+1/4p^2k^2-2px=0k^2x^2-(pk^2+2p)x+1/4p^2k^2=0x1x2=1/4p^2y1y2/x1x2=2p/...