已知一次函数y=x+b.如果他的图象与两坐标轴所围成的图形面积=4,求b的值

问题描述:

已知一次函数y=x+b.如果他的图象与两坐标轴所围成的图形面积=4,求b的值

设y=x+b与y,x轴分别交于A,B
x=0,y=b
y=0,x=-b
所以和坐标轴交点A(0,b),B(-b,0)
所以直角三角形面积=OA*OB=|b|*|-b|/2=4
即b^2=8
所以,b=±2√2

直线与X轴交点为(-b,0),与Y轴交点为(0,b)。组成的三角形面积为=|b|*|-b|/2=4,b=2*(2)^0.5或-2*(2)^0.5,带入原函数即可。

y=x+b
x=0,y=b
y=0,x=-b
所以和坐标轴交点(0,b),(-b,0)
所以直角三角形面积=|b|*|-b|/2=4
|b^2|=8
b^2=8
b=±2√2