答
(1)证明:如图1,
∵∠ABC=∠DBE=90°,
∴∠ABC-∠CBD=∠DBE-∠DBC,
即∠ABD=∠CBE.
在△ABD和△CBE中,
∴△ABD≌△CBE(SAS),
∵AD=CE,∠BAD=∠BCE.
∵∠AGB与∠CGF是对顶角,
∴∠AGB=∠CGF.
∵∠BAD+∠AGB=90°,
∴∠GCF+∠CGF=90°,
∴∠CFG=90°,
∴AD⊥CE;
(2)AD=CE,AD⊥CE,理由如下
如图2:,
∵∠ABC=∠DBE=90°,
∴∠ABC+∠CBD=∠DBE+∠DBC,
即∠ABD=∠CBE.
在△ABD和△CBE中,
∴△ABD≌△CBE(SAS),
∵AD=CE,∠BAD=∠BCE.
∵∠AGB与∠CGF是对顶角,
∴∠AGB=∠CGF.
∵∠BAD+∠AGB=90°,
∴∠GCF+∠CGF=90°,
∴∠CFG=90°,
∴AD⊥CE.
答案解析:(1)根据等式的性质,可得∠ABD与∠CBE的关系,根据全等三角形的判定与性质,可得AD与CE的关系,根据余角的性质,可得∠CGF与∠GCF的关系,根据直角三角形的判定,可得答案;
(2)根据等式的性质,可得∠ABD与∠CBE的关系,根据全等三角形的判定与性质,可得AD与CE的关系,根据余角的性质,可得∠CGF与∠GCF的关系,根据直角三角形的判定,可得答案.
考试点:全等三角形的判定与性质;旋转的性质.
知识点:本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,余角的性质,直角三角形的判定.