如图,已知∠ABC=∠DBE=90°,DB=BE,AB=BC. (1)求证:AD=CE,AD⊥CE; (2)若△DBE绕点B旋转到△ABC的外部其他条件不变,则(1)中结论是仍然成立?画出图形,证明你结论.
问题描述:
如图,已知∠ABC=∠DBE=90°,DB=BE,AB=BC.
(1)求证:AD=CE,AD⊥CE;
(2)若△DBE绕点B旋转到△ABC的外部其他条件不变,则(1)中结论是仍然成立?画出图形,证明你结论.
答
(1)证明:如图1,∵∠ABC=∠DBE=90°,∴∠ABC-∠CBD=∠DBE-∠DBC,即∠ABD=∠CBE.在△ABD和△CBE中AB=BC∠ABD=∠CBEBD=BE,∴△ABD≌△CBE(SAS),∵AD=CE,∠BAD=∠BCE.∵∠AGB与∠CGF是对顶角,∴∠AGB=...