等差数列{an},{bn}的前n项和分别为Sn,Tn,若SnTn=2n3n+1,则anbn=( )A. 23B. 2n−13n−1C. 2n+13n+1D. 2n−13n+4
问题描述:
等差数列{an},{bn}的前n项和分别为Sn,Tn,若
=Sn Tn
,则2n 3n+1
=( )an bn
A.
2 3
B.
2n−1 3n−1
C.
2n+1 3n+1
D.
2n−1 3n+4
答
∵
=an bn
=2an
2bn
=
a1+a2n−1
b1+b2n−1
=
(2n−1)(a1+a2n−1) 2
(2n−1)(b1+b2n−1) 2
s2n−1 T2n−1
∴
=an bn
=2(2n−1) 3(2n−1)+1
2n−1 3n−1
故选B.
答案解析:利用等差数列的性质求得
=an bn
,然后代入s2n−1 T2n−1
=Sn Tn
即可求得结果.2n 3n+1
考试点:等差数列的性质.
知识点:此题考查学生灵活运用等差数列通项公式化简求值,做题时要认真,是一道基础题.