等差数列{an},{bn}的前n项和分别为Sn,Tn,若SnTn=2n3n+1,则anbn=(  )A. 23B. 2n−13n−1C. 2n+13n+1D. 2n−13n+4

问题描述:

等差数列{an},{bn}的前n项和分别为Sn,Tn,若

Sn
Tn
=
2n
3n+1
,则
an
bn
=(  )
A.
2
3

B.
2n−1
3n−1

C.
2n+1
3n+1

D.
2n−1
3n+4

an
bn
2an
2bn
a1+a2n−1
b1+b2n−1
=
(2n−1)(a1+a2n−1
2
(2n−1)(b1+b2n−1
2
s2n−1
T2n−1

an
bn
=
2(2n−1)
3(2n−1)+1
=
2n−1
3n−1

故选B.
答案解析:利用等差数列的性质求得
an
bn
s2n−1
T2n−1
,然后代入
Sn
Tn
=
2n
3n+1
即可求得结果.
考试点:等差数列的性质.
知识点:此题考查学生灵活运用等差数列通项公式化简求值,做题时要认真,是一道基础题.