等差数列{an},{bn}的前n项和分别为Sn和Tn,若SnTn=2n/3n+1,则limn→∞anbn=_.

问题描述:

等差数列{an},{bn}的前n项和分别为Sn和Tn,若

Sn
Tn
=
2n
3n+1
,则
lim
n→∞
an
bn
=______.

Sn
Tn
=
2n
3n+1

an
bn
=
a1+a2n−1
b1+b2n−1
=
S2n−1
T2n−1
=
2(2n−1)
3(2n−1)+1
=
2n−1
3n−1

lim
n→∞
an
bn
=
lim
n→∞
2n−1
3n−1
=
lim
n→∞
2−
1
n
3−
1
n
=
2
3

故答案为:
2
3