已知数列an的通项公式为an=2-3n,则{an}的前n项和Sn等于Sn=na+(n(n-1)*d/2=-n+n(n-1)*d/2=-n+n(n-1)*(-3)/2.∴Sn=n(1-3n)/2.求∴Sn=n(1-3n)/2.

问题描述:

已知数列an的通项公式为an=2-3n,则{an}的前n项和Sn等于
Sn=na+(n(n-1)*d/2=-n+n(n-1)*d/2=-n+n(n-1)*(-3)/2.
∴Sn=n(1-3n)/2.
求∴Sn=n(1-3n)/2.