若tan(a+兀/4)=-3,则tan2a=

问题描述:

若tan(a+兀/4)=-3,则tan2a=

tan(a+兀/4)=(tana+tanπ/4)/(1-tanatanπ/4)=(tana+1)/(1-tana)=-3
tan=1/2
tan2a=(2tana)/(1-tanatana)=(2*1/2)/[1-(1/2)*(1/2)]=4/3