在△ABC中,角A,B,C的对边分别为a,b,c,且acosC,bcosB,ccosA成等差数列,(Ⅰ)求B的值;(Ⅱ)求2sin2A+cos(A-C)的范围.
问题描述:
在△ABC中,角A,B,C的对边分别为a,b,c,且acosC,bcosB,ccosA成等差数列,
(Ⅰ)求B的值;
(Ⅱ)求2sin2A+cos(A-C)的范围.
答
(Ⅰ)∵acosC,bcosB,ccosA成等差数列,
∴acosC+ccosA=2bcosB,
由正弦定理得,a=2RsinA,b=2RsinB,c=2RsinC,
代入得:2RsinAcosC+2RcosAsinC=4RsinBcosB,
即:sin(A+C)=sinB,
∴sinB=2sinBcosB,
又在△ABC中,sinB≠0,
∴cosB=
,1 2
∵0<B<π,
∴B=
;π 3
(Ⅱ)∵B=
,π 3
∴A+C=
2π 3
∴2sin2A+cos(A-C)=1-cos2A+cos(2A-
)2π 3
=1-cos2A-
cos2A+1 2
sin2A=1+
3
2
sin2A-
3
2
cos2A3 2
=1+
sin(2A-
3
),π 3
∵0<A<
,-2π 3
<2A-π 3
<ππ 3
∴-
<sin(2A-
3
2
)≤1π 3
∴2sin2A+cos(A-C)的范围是(-
,1+1 2
].
3