数列an,的前n项和为Sn,2an=Sn+2,n∈Ν*(1)求数列an的通项公式(2)若bn=log₂an+log₂a(n+1),求数列﹛1/bn(bn+1)﹜的前n项和Tn

问题描述:

数列an,的前n项和为Sn,2an=Sn+2,n∈Ν*
(1)求数列an的通项公式
(2)若bn=log₂an+log₂a(n+1),求数列﹛1/bn(bn+1)﹜的前n项和Tn

1)令n=n-1,再两式作差,可得2an-2a[n-1]=a[n],又a1=2所以an=2^n
2)bn=2n加1,然后裂项
Tn=0.5*(1/3-1/5 1/5-1/7..... 1/(2n加1)-1/(2n加3))
整理得:Tn=n/(6n加9)

  Sn=2An+2;
n>=2,An=Sn-S(n-1)=2An+2-(2A(n-1)+2);
An/A(n-1)=2;
n=1,A1=2
An=二乘以二的N-1此方

(1)2an =Sn+2n=1a1=22an =Sn+22[Sn-S(n-1)] =Sn+2Sn +2= 2[S(n-1)+2](Sn +2)/[S(n-1)+2] =2(Sn +2)/(S1 +2)=2^(n-1)Sn +2 =2^(n+1)Sn = -2+ 2^(n+1)an =Sn-S(n-1) = 2^n(2)bn = logan + loga(n+1)= n+(n+1)= 2n+11/[...