如图(1),直角梯形OABC中,∠A=90°,AB‖CD,且AB=2,OA=2√3,∠BCO=60°.(1)求证:OBC为等边三角形;(2)如图(2),OH⊥BC于点H,动点P从点H出发,沿线段HO向点O运动,动点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为1/秒.设点P运动的时间为t秒,△OPQ的面积为S,求S与t之间的函数关系,并求出t的取值范围;(3)设PQ与OB交于点M,当OM=PM时,求t的值.

问题描述:

如图(1),直角梯形OABC中,∠A=90°,AB‖CD,且AB=2,OA=2√3,∠BCO=60°.
(1)求证:OBC为等边三角形;
(2)如图(2),OH⊥BC于点H,动点P从点H出发,沿线段HO向点O运动,动点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为1/秒.设点P运动的时间为t秒,△OPQ的面积为S,求S与t之间的函数关系,并求出t的取值范围;
(3)设PQ与OB交于点M,当OM=PM时,求t的值.