f(x) 的导数 f`(x)在[a,b]上连续,且f(b)=a,f(a)=b,证明:定积分∫[a,b]f(x) f`(x)dx=1/2(a^2-b^2)
问题描述:
f(x) 的导数 f`(x)在[a,b]上连续,且f(b)=a,f(a)=b,证明:定积分∫[a,b]f(x) f`(x)dx=1/2(a^2-b^2)
答
f(x) 的导数 f`(x)在[a,b]上连续,且f(b)=a,f(a)=b,证明:定积分∫[a,b]f(x) f`(x)dx=1/2(a^2-b^2)