设f(x)在【a,b】有连续的二阶导数,又f(a)等于f'(a)等于0,及定积分∫上线是b下线是a f(x)dx等于2,...设f(x)在【a,b】有连续的二阶导数,又f(a)等于f'(a)等于0,及定积分∫上线是b下线是a f(x)dx等于2,求∫上线b下线a f''(x)(x-b)∧2dx

问题描述:

设f(x)在【a,b】有连续的二阶导数,又f(a)等于f'(a)等于0,及定积分∫上线是b下线是a f(x)dx等于2,...
设f(x)在【a,b】有连续的二阶导数,又f(a)等于f'(a)等于0,及定积分∫上线是b下线是a f(x)dx等于2,求∫上线b下线a f''(x)(x-b)∧2dx