求参数方程x=ln(1+t∧2),y=t-arctant,所确定函数的三阶导数.我没明白求什么我的一阶导数为t/2?
问题描述:
求参数方程x=ln(1+t∧2),y=t-arctant,所确定函数的三阶导数.我没明白求什么我的一阶导数为t/2?
答
x't=2t/(1+t^2)
y't=1-1/(1+t^2)=t^2/(1+t^2)
y'=dy/dx=y't/x't=t/2
y"=d(y')/dx=d(y')/dt /(dx/dt)=(1/2)/[2t/(1+t^2)]=(1+t^2)/(4t)=1/4*[1/t+t]
y"'=d(y")/dx=d(y")/dt/(dx/dt)=1/4*[-1/t^2+1]*(1+t^2)/(2t)=(t^4-1)/(8t^3)