抛物线y=x^2+2mx+m^2-2m(m属于R)的顶点的轨迹方程是
问题描述:
抛物线y=x^2+2mx+m^2-2m(m属于R)的顶点的轨迹方程是
答
已知抛物线顶点横坐标为x=-b/2a纵坐标为y=(4ac-b²)/4a将a=1,b=2m,c=m²-2m代入得x=-m y=[4(m²-2m)-(2m)²]/4y=(4m²-8m-4m²)/4y=-8m/4y=-2m所以抛物线y=x^2+2mx+m^2-2m(m属于R)的顶点的...