如图,△ABC中,AB=AC,D是BC边上任意一点,DF⊥AC于点F,E在AB边上,ED⊥BC于点D,∠AED=155°,则∠EDF等于______.
问题描述:
如图,△ABC中,AB=AC,D是BC边上任意一点,DF⊥AC于点F,E在AB边上,ED⊥BC于点D,∠AED=155°,则∠EDF等于______.
答
知识点:综合考查了三角形的外角性质和等腰三角形的性质.注意:等角的余角相等,根据这一性质是发现角相等的一种常用方法.
∵∠B=∠AED-∠BDE=155°-90°=65°,
又∵AB=AC,
∴∠C=∠B=65°,
∵DF⊥AC,ED⊥BC,
∴∠EDF=∠C=65°,
故答案为:65°.
答案解析:由于∠EDF、∠C同为∠EDC的余角,因此它们相等,欲求∠EDF,只需求得∠C或∠B的度数即可,已知了∠AED的度数,可直接利用三角形的外角性质来求得∠B的度数,由此得解.
考试点:等腰三角形的性质.
知识点:综合考查了三角形的外角性质和等腰三角形的性质.注意:等角的余角相等,根据这一性质是发现角相等的一种常用方法.